A fast and robust strategy to remove variant level artifacts in Alzheimer’s Disease Sequencing Project data (Belloy et al. 2022) (via DSS) |
|
|
|
A longitudinal study of Alzheimer Disease and other dementing illnesses – KnightADRC GWAS (via DSS) |
|
|
|
ACT and Genetic Differences GWAS |
|
|
535539 |
ADC1- Alzheimer Disease Center Dataset 1 |
|
|
520345 |
ADC2- Alzheimer Disease Center Dataset 2 |
|
|
525723 |
ADC3- Alzheimer Disease Center Dataset 3 |
|
|
659224 |
ADC4 - Alzheimer Disease Center Dataset 4 |
|
|
639151 |
ADC5 - Alzheimer Disease Center Dataset 5 |
|
|
637167 |
ADC6 - Alzheimer Disease Center Dataset 6 |
|
|
635372 |
ADC7 - Alzheimer Disease Center Dataset 7 |
|
|
628661 |
ADGC African American Summary Statistics- Reitz et al. (2013) |
|
|
|
ADGC Age at Onset Summary Statistics- Naj et al. (2014) |
|
|
|
ADGC case-control summary statistics on 7050 samples not included in the IGAP-2013 discovery stage- Hu et al. (2019) |
|
|
|
ADGC Neuropath Summary Stats and Phenotypes- Beecham et al. (2014) |
|
|
|
ADGC Summary Statistics- Naj et al. (2011) |
|
|
|
Caribbean Hispanic AD Study |
|
|
166 |
CHOP Exome Chip |
|
|
241547 |
CLU, A potential endophenotype for AD: Summary Statistics- Deming et al. (2016) |
|
|
|
CSF Aβ/ptau Summary Statistics - Deming Y et al. (2017) |
|
|
|
CSF Summary Statistics- Cruchaga et al. (2013) |
|
|
|