You are here

Exome Chip Analysis Identifies Low-Frequency and Rare Variants in MRPL38 for White Matter Hyperintensities on Brain Magnetic Resonance Imaging.

TitleExome Chip Analysis Identifies Low-Frequency and Rare Variants in MRPL38 for White Matter Hyperintensities on Brain Magnetic Resonance Imaging.
Publication TypeJournal Article
Year of Publication2018
AuthorsJian X, Satizabal CL, Smith AV, Wittfeld K, Bis JC, Smith JA, Hsu F-C, Nho K, Hofer E, Hagenaars SP, Nyquist PA, Mishra A, Adams HHH, Li S, Teumer A, Zhao W, Freedman BI, Saba Y, Yanek LR, Chauhan G, van Buchem MA, Cushman M, Royle NA, R Bryan N, Niessen WJ, Windham BG, DeStefano AL, Habes M, Heckbert SR, Palmer ND, Lewis CE, Eiriksdottir G, Maillard P, Mathias RA, Homuth G, Valdés-Hernández MDel C, Divers J, Beiser AS, Langner S, Rice KM, Bastin ME, Yang Q, Maldjian JA, Starr JM, Sidney S, Risacher SL, Uitterlinden AG, Gudnason VG, Nauck M, Rotter JI, Schreiner PJ, Boerwinkle E, van Duijn CM, Mazoyer B, von Sarnowski B, Gottesman RF, Levy D, Sigurdsson S, Vernooij MW, Turner ST, Schmidt R, Wardlaw JM, Psaty BM, Mosley TH, DeCarli CS, Saykin AJ, Bowden DW, Becker DM, Deary IJ, Schmidt H, Kardia SLR, M Ikram A, Debette S, Grabe HJ, Longstreth WT, Seshadri S, Launer LJ, Fornage M
Corporate AuthorsneuroCHARGE Working Group
JournalStroke
Volume49
Issue8
Pagination1812-1819
Date Published2018 08
ISSN1524-4628
KeywordsBrain, Cohort Studies, Exome, Genetic Variation, Humans, Magnetic Resonance Imaging, Mitochondrial Proteins, White Matter
Abstract

Background and Purpose- White matter hyperintensities (WMH) on brain magnetic resonance imaging are typical signs of cerebral small vessel disease and may indicate various preclinical, age-related neurological disorders, such as stroke. Though WMH are highly heritable, known common variants explain a small proportion of the WMH variance. The contribution of low-frequency/rare coding variants to WMH burden has not been explored. Methods- In the discovery sample we recruited 20 719 stroke/dementia-free adults from 13 population-based cohort studies within the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, among which 17 790 were of European ancestry and 2929 of African ancestry. We genotyped these participants at ≈250 000 mostly exonic variants with Illumina HumanExome BeadChip arrays. We performed ethnicity-specific linear regression on rank-normalized WMH in each study separately, which were then combined in meta-analyses to test for association with single variants and genes aggregating the effects of putatively functional low-frequency/rare variants. We then sought replication of the top findings in 1192 adults (European ancestry) with whole exome/genome sequencing data from 2 independent studies. Results- At 17q25, we confirmed the association of multiple common variants in TRIM65, FBF1, and ACOX1 ( P<6×10). We also identified a novel association with 2 low-frequency nonsynonymous variants in MRPL38 (lead, rs34136221; P=4.5×10) partially independent of known common signal ( P=1.4×10). We further identified a locus at 2q33 containing common variants in NBEAL1, CARF, and WDR12 (lead, rs2351524; P=1.9×10). Although our novel findings were not replicated because of limited power and possible differences in study design, meta-analysis of the discovery and replication samples yielded stronger association for the 2 low-frequency MRPL38 variants ( P=2.8×10). Conclusions- Both common and low-frequency/rare functional variants influence WMH. Larger replication and experimental follow-up are essential to confirm our findings and uncover the biological causal mechanisms of age-related WMH.

DOI10.1161/STROKEAHA.118.020689
Pubmed Linkhttps://www.ncbi.nlm.nih.gov/pubmed/30002152?dopt=Abstract
page_expoExternal
Alternate JournalStroke
PubMed ID30002152
PubMed Central IDPMC6202149
Grant ListR01 HL112064 / HL / NHLBI NIH HHS / United States
R01 NS017950 / NS / NINDS NIH HHS / United States
R01 AG054076 / AG / NIA NIH HHS / United States
U01 HL130114 / HL / NHLBI NIH HHS / United States
R01 NS087541 / NS / NINDS NIH HHS / United States
U01 HL096902 / HL / NHLBI NIH HHS / United States
MR/M013111/1 / / Medical Research Council / United Kingdom
MR/K026992/1 / / Medical Research Council / United Kingdom
R01 HL105756 / HL / NHLBI NIH HHS / United States
R01 AG033193 / AG / NIA NIH HHS / United States
G0701120 / / Medical Research Council / United Kingdom
R01 LM012535 / LM / NLM NIH HHS / United States
U01 HL096899 / HL / NHLBI NIH HHS / United States
U01 AG049506 / AG / NIA NIH HHS / United States
P30 AG010129 / AG / NIA NIH HHS / United States

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer