Title | Using INFERNO to Infer the Molecular Mechanisms Underlying Noncoding Genetic Associations. |
Publication Type | Journal Article |
Year of Publication | 2021 |
Authors | Amlie-Wolf A, Kuksa PP, Lee C-Y, Mlynarski E, Leung YYee, San Wang L- |
Journal | Methods Mol Biol |
Volume | 2254 |
Pagination | 73-91 |
Date Published | 2021 |
ISSN | 1940-6029 |
Keywords | Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Molecular Sequence Annotation, RNA, Long Noncoding, Software |
Abstract | The INFERNO method provides an integrative computational framework for characterizing the causal variants, tissue contexts, affected regulatory mechanisms, and target genes underlying noncoding genetic variants associated with any phenotype or disease of interest. Here we describe the computational steps required to run the full INFERNO pipeline on any dataset of interest. |
DOI | 10.1007/978-1-0716-1158-6_6 |
Pubmed Link | https://www.ncbi.nlm.nih.gov/pubmed/33326071?dopt=Abstract |
page_expo | Internal |
Alternate Journal | Methods Mol Biol |
PubMed ID | 33326071 |
Grant List | U24 AG041689 / AG / NIA NIH HHS / United States U54 AG052427 / AG / NIA NIH HHS / United States U01 AG032984 / AG / NIA NIH HHS / United States U01 AG058654 / AG / NIA NIH HHS / United States |
Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer